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Abstract. We examine the ground state and the excitations of a one-dimensional Heisenberg
spin-1/2 antiferromagnet with alternating dimers and four-spin plaquettes (a dimer–plaquette
chain). The properties of the system depend on the competing dimer and plaquette bonds.
Several exact, exact numerical and perturbational results are presented. We find that the system
is gapped for all parameter values. The spin pair correlation functions can be characterized
by three different correlation lengths for dimer–dimer, dimer–plaquette and plaquette–plaquette
correlations. For the latter we find an effectiveS = 1 Haldane-like behaviour in the limit of
dominating dimer bonds.

On introducing frustration, the system undergoes a first-order phase transition to a fully
dimerized state. As regards the phase relationships of the ground-state wave function, the
system represents an example showing exact validity of the Marshall–Peierls sign rule in a
strongly frustrated antiferromagnet.

The model considered is related to the recently found 1/5-depleted square-lattice Heisenberg
system CaV4O9.

1. Introduction

The exciting collective magnetic properties of low-dimensional quantum spin systems have
attracted much attention over the last decade. The search for systems with spin-liquid ground
states is one subject of continuous interest. Compressible (gapped) and incompressible
(gapless) spin-liquid phases with more or less exotic ground-state ordering have been
discussed in particular for the frustratedJ1–J2 model on the square lattice (see e.g. [1]).

The recent discovery of a spin gap inS = 1/2 quasi-two-dimensional CaV4O9 [2, 3]
has stimulated the investigation of quantum disorder and gap formation of systems with
different types of antiferromagnetic nearest-neighbour (NN) bond [4–10]. CaV4O9 has a
layered structure where the magnetic V4+ ions have spin 1/2 and form a 1/5-depleted square
lattice [11, 12]. The minimal model for CaV4O9 is a 1/5-depleted Heisenberg model, i.e. a
model with four-spin plaquettes connected at their edges with one neighbouring plaquette.
Because of the distortion of the lattice [11, 12] the intra-plaquetteJp-bonds and the inter-
plaquette (dimer)Jd -bonds might be different. Though in a classical version of this non-
frustrated Heisenberg model the Néel state is the stable ground state for anyJp > 0, Jd > 0,
in the quantum case a competition arises between a local singlet formation of a couple of
spins along a dimer bondJd and a local singlet formation of the four spins belonging to
a plaquette and coupled byJp. However, the explanation of the measured spin gap by
competition betweenJp and Jd would require unreasonably large differences betweenJp
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andJd . As proposed in several papers [13, 12, 14–17] one needs additional frustration to
get reasonable values for the gap.

In this paper we extend our preliminary discussion [9, 10] of the competition between
dimer and plaquette bonds and the role of frustration in the one-dimensional counterpart of
the depleted square-lattice Heisenberg model. This model is simpler than the 2D model,
but nevertheless it contains non-trivial physics. As far as we are aware, currently there is
no corresponding quasi-1D material, but it seems to be possible that it may be synthesized
in the future.

Though the Heisenberg model considered is a spin-1/2 model, it will be shown below
that the model also contains elements of the physics of the spin-1 chain which is currently
also under intensive discussion (see e.g. [18–21] and references therein).

The paper is organized as follows. In section 2 we present the model and elaborate
on some exact statements concerning eigenvalues and eigenstates of the model. In section
3 we discuss exact numerical data for chains of up to 32 sites as well as analytic results
obtained using perturbation theory. Conclusions are given in section 4.

2. The model and general results

The spin-1/2 Heisenberg chain considered here consists ofN spins formingNp = N/4
plaquettes which are connected byNd = Np dimer bonds (see figure 1). The two spins
connected by thenth dimer bondJd we call dimer spins and denote them bySnα andSnβ ,
where the indexα (β) stands for the left-hand (right-hand) spin. The two spins sited at the
top and the bottom of thenth plaquette we call plaquette spins and denote them bySna and
Snb , where the indexa (b) stands for the top (bottom) spin. With this notation we write the
Hamiltonian as

Hd−p = Jd
Np∑
n=1

Snα · Snβ + Jp
Np∑
n=1

(Snβ · Sna + Snβ · Snb + Sna · Sn+1
α + Snb · Sn+1

α ) (1)

(Jd, Jp > 0). Frustration is introduced by a diagonal antiferromagnetic bondJf connecting
a top and a bottom plaquette spin (see figure 1). Then the total Hamiltonian reads

H = Hd−p +Hf = Hd−p + Jf
Np∑
n=1

Sna · Snb Jf > 0. (2)
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Figure 1. See the text.

For the sake of convenience we consider chains with periodic boundary conditions.
Approximately at the same time as we introduced [9] the above-defined dimer–plaquette

chain, Takano and co-workers [22] considered a so-called diamond chain, built of plaquettes
only. The ground-state problem of this diamond chain was recently analysed by Niggemann
et al [23]. The main difference between the two models consists in the existence of the
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dimer bond in the dimer–plaquette chain. As a consequence, the two models belong to
different universality classes. We will briefly discuss some important differences between
the two models in section 4.

For the above described dimer–plaquette chain, equations (1), (2), we can make the
general statements given below in subsections 2.1–2.9.

2.1. The classical ground state

For Jf < Jp the ground state is a Ńeel state. The correlations are〈Sna ·Snb 〉 = +S2 between
a bottom and top spin of the same plaquette (Jf -bonds),〈Snα · Snβ〉 = −S2 between two
neighbouring dimer spins (Jd -bonds) and〈Snβ · Sna(b)〉 = 〈Sn+1

α · Sna(b)〉 = −S2 between
a dimer spin and a neighbouring plaquette spin (Jp-bonds). ForJf > Jp the ground
state has twisted plaquette spins. The corresponding correlations of neighbouring spins are
〈Sna ·Snb 〉 = S2(2J 2

p /J
2
f −1), 〈Snα ·Snβ〉 = −S2 and〈Snβ ·Sna(b)〉 = 〈Sn+1

α ·Sna(b)〉 = −S2Jp/Jf .
Now we turn to the quantum spin-1/2 case.

2.2. Integrals of motion

In addition to the usual integrals of motion (thez-component and the square of the total
spin) there areNp local integrals of motion, namely the square of the total spin of the top
and bottom spin of a plaquetten, i.e.

[H, (Snab)
2]− = 0 Snab = Sna + Snb . (3)

Hence we can classify all eigenstates in terms of the following set of the quantum numbers:
energyE, thez-component of the total spinM, the square of the total spinS andNp local
quantum numbersSnp of (Snab)

2, where the values forSnp are 0 (singlet) or 1 (triplet). For the
correlation function of a top and a bottom spin of plaquetten we have〈Sna · Snb 〉 = −3/4
(+1/4) for Snp = 0 (Snp = 1).

2.3. The Lieb–Mattis theorem and the ground state in the non-frustrated limit

In the limit Jf = 0, i.e.H = Hp−d , the lattice is bipartite and the Lieb–Mattis theorem is
valid [24, 25], i.e. the ground state is a singlet,S = 0, of the total spin. As a consequence
of the theorem we have〈Sna · Snb 〉 > 0 since the top and bottom spins of a plaquetten
belong to the same sublattice, i.e. the ground state is a singlet of the total spin but all local
quantum numbers areSnp = 1 (n = 1, . . . , Np).

We notice that the numerical results (see below) indicate that the ground state is a singlet
of the total spin for finite frustration, too, which is in accordance with other calculations of
the ground state of various frustrated antiferromagnets.

2.4. Mapping onto a spin-1/2–spin-1 chain

As a result of the statement made in subsection 2.3 for zero temperature, the Hamiltonian (1)
can be exactly mapped onto a chain with mixed spin-1/2 and spin-1 objects as shown in
figure 2.

This effective model describes not only the ground state, but also all other eigenstates
of (1) with Snp = 1 for all n = 1, . . . , Np.

Notice that the antiferromagnetic chain with alternating spinsS = 1/2 andS = 1 was
recently discussed as a quantum ferrimagnet [26–28]; however, the effective model here is
of a different kind, since we have twice as many spinsS = 1/2 as spinsS = 1.
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t t x t t x t t
Jd Jp

xspin 1 tspin 1=2

Figure 2. A spin-1/2–spin-1 chain, which is equivalent to the non-frustrated Hamiltonian (1)
for zero temperature.

2.5. Product eigenstates

We consider now the class of eigenstates which do not correspond to the spin-1/2–spin-1
chain, i.e. we consider states where some of the local quantum numbersSnp are zero. Sup-
poseSip = 0 in the plaquettei. Then the top and bottom spins of plaquettei form a
singlet which is decoupled from all other spins, i.e. we have〈Sna(b) ·Sia(b)〉 = 0 (n 6= i) and
〈Snα(β) · Sia(b)〉 = 0. Hence the eigenstate can be written in product form:

|9〉 = |(ai, bi)〉|9remainder〉 (4)

where|(ai, bi)〉 = (↑ai↓bi − ↓ai↑bi )/
√

2 is a pair singlet state of the top and bottom spins
of plaquettei and|9remainder〉 is a state describing all of the remainingN − 2 spins forming
a corresponding open chain with dimer ends. SupposeSip = 0 in L > 1 plaquettesi. Then
the eigenstate separates intoL pair singlet states of the top and bottom spins of plaquettes
i and eigenstates of the finite chain pieces lying between two plaquettes withSip = 0. The
more plaquettesi in a singlet stateSip = 0, the shorter the finite chain pieces between two
plaquettes withSip = 0. The extreme case is the state withSnp = 0 for all n = 1, . . . , Np
plaquettes, where the finite pieces between two plaquettes are just the dimers themselves.
This state can be explicitly written as

|90,...,0〉 =
Np∏
n=1

|(an, bn)〉
Np∏
n=1

|(αn, βn)〉 (5)

where |(αn, βn)〉 = (↑αn↓βn − ↓αn↑βn)/
√

2 is a pair singlet state of a dimer bondn. The
energy of this state is

E0,...,0 = −3

4
JdNp − 3

4
JfNp. (6)

2.6. Eigenstates and energy levels—the frustrated versus the non-frustrated model

Between the eigenstates and the energy of the non-frustrated (1) and the frustrated (2)
models there exist simple relations due to the fact thatHp−d commutes withHf . Hence
the eigenfunctions ofHp−d are not changed on including frustration, and for the energy
contribution of the frustrating partHf only the local quantum numbersSnp are important.
Consider any eigenstate ofHp−d with energyEp−d , andNs

p plaquettes with quantum number
Snp = 0 andNt

p plaquettes with quantum numberSip = 1 (Nt
p +Ns

p = Np). Then the energy
for the frustrated modelH = Hp−d +Hf is

Ep−d,f = Ep−d + Jf
(

1

4
Nt
p −

3

4
Ns
p

)
= Ep−d + Jf

(
1

4
Np −Ns

p

)
. (7)
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2.7. Upper and lower bounds for the criticalJ cf

From equation (7) it is obvious thatJf favours energetically the singlet formation of
plaquette spins, and for largeJf the singlet product state (5) becomes the ground state
of H .

According to subsection 2.3 the ground state is the lowest eigenstate withSnp = 1 for
all n = 1, . . . , Np for Jf = 0 and has the energyE0

1,...,1. Following the ideas of reference
[23] we used a linear programming scheme to prove that at a critical valueJ cf > 0 a first-
order transition takes place from this ground state directly to the product state (5) of energy
E0,...,0, equation (6), withSnp = 0 for all n = 1, . . . , Np . Then the criticalJ cf is defined by
E0

1,...,1|Jf=J cf = E0,...,0|Jf=J cf . According to (7) we have

E0
1,...,1|Jf=J cf = E0

1,...,1|Jf=0+ 1

4
J cf Np

!= −3

4
(Jd + J cf )Np

which yields

J cf = −
3

4
Jd − 1

Np
E0

1,...,1

∣∣∣∣
Jf=0

. (8)

First we look for an upper bound forJ cf . We considerJf 6 J cf . Then the state with
Snp = 1 for all n = 1, . . . , Np is the ground state andE0,...,0, equation (6), sets an upper
bound for the ground-state energyE0

1,...,1.
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Figure 3. An elementary clusterH 1
n for the decompositionH = ∑(H 1

n + H 2
n ) (see the text).

The clusterH 2
n is the mirror image ofH 1

n .

A lower bound of the ground-state energy is found (see for instance [30]) by a simple
cluster decomposition ofH :

H =
Np∑
n=1

H 1
n +H 2

n

H 1
n =

Jd

2
Snα · Snβ + JpSnβ · (Sna + Snb )+

Jf

2
Sna · Snb

H 2
n =

Jf

2
Sna · Snb + JpSn+1

α · (Sna + Snb )+
Jd

2
Sn+1
α · Sn+1

β

(9)

(see figure 3). The lowest energy ofH 1
n andH 2

n with Snp = 1 is

En = −Jd
8
− Jp

4
+ Jf

8
− 1

4

√
J 2
d − 2JdJp + 9J 2

p . (10)

The lower bound forE0
1,...,1 is 2NpEn. The resulting inequality

−3

4
(Jd + Jf )Np > E0

1,...,1 > 2NpEn
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implies the following upper bound forJ cf :

J cf 6 −
Jd

2
+ Jp

2
+ 1

2

√
J 2
d − 2JdJp + 9J 2

p . (11)

Next we look for a lower bound forJ cf . We use equation (8) and replaceE0
1,...,1(Jf = 0)

by a variational energyEvar of a trial ground state ofHp−d . SinceEvar > E0
1,...,1(Jf = 0),

the lower bound is

J cf > −
3

4
Jd − 1

Np
Evar . (12)

For Jp > 0 we are able to find a trial state (see section 3) withEvar 6 −Np 3
4Jd , i.e.J cf > 0

is valid for finite Jp.

2.8. Validity of the Marshall–Peierls sign rule in a frustrated spin system

In the limit Jf = 0 (H = Hp−d ) the lattice is bipartite and the Marshall–Peierls sign rule is
valid [31, 34], i.e. the phase relations of the ground-state wave function are exactly known.
Though there are several arguments that indicate that this sign rule will survive a finite
frustration [32–36], the validity of the sign rule in a non-bipartite frustrated lattice cannot
be shown generally.

On the basis of the statements in subsections 2.6 and 2.7 we argue that for allJf < J cf
(J cf > 0) the ground state of the frustrated HamiltonianHp−d +Hf is equal to the ground
state of the non-frustrated HamiltonianHp−d .

Hence the plaquette–dimer chain considered is one example where the Marshall–Peierls
sign rule does indeed survive finite frustration.

2.9. The spin gap for large frustration,Jf > J cf

We consider the gap1 of the first triplet excitation versus the singlet product ground state
|90,...,0〉, equation (5). Since in|90,...,0〉 the top and bottom spins of any plaquette are
separated from all other spins, the first triplet excitation is a state|90,...,0,1,0,...,0〉 with one
triplet for a certain plaquettei, i.e. Sip = 1:

|90,...,1,0,...,0〉 = |9−<>−〉
Np−1∏
n=1

|(an, bn)〉
Np−2∏
n=1

|(αn, βn)〉 (13)

where in
∏Np−1
n=1 the plaquettei is excluded and in

∏Np−2
n=1 the left-hand and right-hand

neighbouring dimers of plaquettei are excluded.|9−<>−〉 represents just the state with
Sip = 1 for the excluded plaquettei and the adjacent dimersi and i + 1. The degeneracy
of the state (13) is 3Np.

The excitation gap is the energy difference between the ground state|90,...,0〉, equation
(5), and|90,...,0,1,0,...,0〉, equation (13):

1 = E1− E0 = 3

2
Jd + Jf + E−<>−(Jd, Jp) (14)

whereE−<>−(Jd, Jp) is the energy of the excluded cluster−<>− for Jf = 0. Obviously,
E1 − E0 is independent of the sizeN . Since|9−<>−〉 is a state of only six spins it is no
problem to calculateE−<>−(Jd, Jp), i.e. to find the exact value forE1− E0.
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3. Exact diagonalization versus perturbation theory

Using the Lanczos algorithm we calculate the ground state and several low-lying states for
chains with periodic boundary conditions of sizeN = 8, 16, 24, 32 (i.e.Np = 2, 4, 6, 8
plaquettes).

In the limits whereJd/Jp � 1 andJp/Jd � 1 we calculate the energies of the singlet
ground state and the first triplet excitation by second-order perturbation theory. In the limit
whereJd = 0 the unperturbed ground state is a product of the lowest four-spin plaquette
states. In the opposite limit (Jp = 0) the ground state ofHp−d , equation (1), is a product
of dimer singlets and threefold-degenerate triplets of the plaquette spins. The perturbation
theory in second order ofJp leads to the following effective spin Hamiltonian:

Heff = −3

4
JdNp −

J 2
p

Jd
Np +

J 2
p

2Jd

Np∑
n=1

Snab · Sn+1
ab (15)

where the quantitiesSnab are spin-1 operators, i.e.(Snab)
2 = 2. We see that in the limit

whereJp/Jd � 1, the dimer–plaquetteS = 1/2 model maps onto theS = 1 Haldane chain
with an effective exchange parameterJeff = J 2

p /2Jd .

3.1. Ground-state energy, low-lying excitations, spin gap

First we consider the ground-state energyE0. For large frustrationJf > J cf the explicit
expression forE0 is given by equation (6).

For Jf < J cf the ground-state energy obeys equation (7) and it is sufficient to consider
the unfrustrated HamiltonianHp−d . First we consider the two limits of small dimer exchange
Jd � Jp and of small plaquette exchangeJp � Jd . In the first case the perturbation theory
yields

E0

4Np
= −Jp

[
1

2
+ 1

4

43

576

(
Jd

Jp

)2
]
. (16)

The opposite limit is described by the effective spin-1 model (15), i.e.

E0

4Np
= − 3

16
Jd −

J 2
p

4Jd
+ J 2

p

8Jd
εH (17)

whereεH = −1.401 484 038 971 [18, 19] is the well-known energy per site of the Haldane
chain.

The numerical data forN = 16 are shown in figure 4. The energies presented belong
to the corresponding lowest eigenstate for a given set of local quantum numbersSnp ,
n = 1, . . . ,4. (An exception is the state with total spinS = 1 andSnp = 1, n = 1, . . . ,4,
which is the first triplet excitation versus the singlet ground state.) The state with highest
energy is just the product state|90,...,0〉, equation (5); its energy is independent ofJp (see
equation (6)). All of the energies presented are degenerate forJp = 0. On increasingJp
the energies exhibit a quadratic dependence onJp for smallJp, and a linear dependence on
Jp for largerJp. Notice that the linear dependence onJp (obtained via perturbation theory
in the limit Jp � Jd ; see (16)) is already well established forJp ≈ Jd .

In all of the finite systems (N = 8, 16, 24, 32) considered in this paper, the first
triplet excitation has the same local quantum numbers as the ground state, i.e.Snp = 1
(n = 1, . . . , Np). The eigenstates with singletsSnp = 0 for somen have higher energies,
and we find that the larger the number of plaquettes withSnp = 0 the higher the energy.
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Figure 4. Energy eigenvalues versusJp/Jd for the unfrustrated modelHp−d with N = 16
sites. The four numbers in brackets give the local quantum numbersSnp , n = 1, . . . ,4; S is the
quantum number of the total spin.

Next we consider the excitation gap1 between the singlet ground state and the first
triplet excitation. This triplet excitation is the lowest excitation of all (see figure 4). The
perturbation theory for largeJp/Jd yields

1 = Jp
[

1− 1

3

Jd

Jp
− 61

576

(
Jd

Jp

)2]
. (18)

This result was already obtained in [4]. In the opposite limit,Jd/Jp � 1, we can use the
results for the Haldane chain [18, 19] and we have

1 = J 2
p

2Jd
1H = 0.410 50

J 2
p

2Jd
. (19)

If we include frustration the situation is not changed forJf < J cf except in a small region
in the vicinity of the transition, i.e. forJf ≈ J cf the first excitation is not a triplet but a
singlet indicating strong frustration effects [37]. ForJf > J cf the gap is exactly known for
the whole parameter range (see equation (14)).

Numerical data are shown in figure 5, where1 is shown versusJp. The linear
and quadratic dependences for large and smallJp correspond to the perturbation theory
(equations (18) and (19)). On the scale used for figure 5 the data forN = 24 andN = 32
almost coincide.

In the case of the unfrustrated dimer–plaquette chain with identical NN bondsJp = Jd =
1 the gap is already about 50% larger than the Haldane gap1H ; that is,1N=24 = 0.609 22,
1N=32 = 0.609 06,1N→∞ = 0.6086. In accordance with 2D models for CaV4O9 the
frustration may enlarge the gap; in the model considered we have1(Jf + x) > 1(Jf )

(x > 0).
Obviously, though we have a spin-1/2 chain, 1 is finite for any finite Jp which

corresponds to the observation that the gapless spectrum of the Bethe chain is an exceptional
case.

3.2. Critical J cf

The critical pointJ cf is defined in subsection 2.7. This point coincides with the point of
maximal frustration indicated by a maximum in the ground-state energy versusJf precisely
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Figure 5. The excitation gap between the singlet ground state and the lowest triplet excitation.
The dashed lines and the squares correspond to the unfrustrated case. The solid line corresponds
to the frustrated case withJf > J cf , where the gap is independent ofN . For Jf < J cf the
gaps of the frustrated and the unfrustrated models coincide. The critical point forN = 24 is at
Jp = 0.534Jd .

Figure 6. The critical frustrationJ cf versusJp for N = 24 (crosses) andN = 16 (solid line) and
upper and lower bounds (see the text). Above the critical line the ground state ofH is the fully
dimerized product state (5) and below the critical line the ground state of the total Hamiltonian
H coincides with that ofHp−d (equation (1)).

at Jf = J cf .
Upper and lower bounds forJ cf are given in equations (11) and (12).
For the estimation of the lower bound we consider a variational state of the form

|9var〉 =
Np−1∏
n=1
n odd

|↑an ↑bn〉|↓an+1 ↓bn+1〉|{αn, βn}〉|{βn+1, αn+1}〉 (20)

where |↑an ↑bn〉 (|↓an+1 ↓bn+1〉) is a triplet state of the plaquette spins withz-component
S
n,z
ab = +1 (Sn+1,z

ab = −1) and

|{αn, βn}〉|{βn+1, αn+1}〉
= (1+ x2)−1(|↑αn ↓βn〉 − x|↓αn ↑βn〉)(|↑βn+1 ↓αn+1〉 − x|↓βn+1 ↑αn+1〉)
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Figure 7. Spin pair correlations〈S(0) · S(j)〉 versus the separation of the unfrustrated chain
Hp−d of lengthN = 32 sites for three values ofJp/Jd . For the spin–spin separation the number
of NN steps from the reference spin at 0 to the spin atj is used. Left-hand (P) side of the figures:
reference spinS(0) is a plaquette spinSna(b), i.e. the correlationsj = 1, 2, 4, 5, 7, 8, 10, 11 are
plaquette–dimer correlations, the correlationsj = 3, 6, 9, 12 are plaquette–plaquette correlations
(cf. figure 1). Right-hand (D) side of the figures: reference spinS(0) is a dimer spinSnα ,
i.e. the correlationsj = 1, 3, 4, 6, 7, 9, 10, 12 are dimer–dimer correlations, the correlations
j = 2, 5, 8, 11 are dimer–plaquette correlations (cf. figure 1). The crosses indicate the correl-
ations of the corresponding Haldane chain of lengthN = 8.

is a variational state which interpolates between a dimer singlet state (x = 1) and a Ńeel
state (x = 0). The calculation of the optimizedx is simple:

x = −2Jp/Jd +
√

1+ 4J 2
p /J

2
d .

The energy of this stateEvar entering equation (12) is quite good in the limit of smallJp
and becomes exact forJp = 0.

The numerical results are presented in figure 6. While the lower bound demonstrates
that J cf is finite for any finiteJp, we see that the expression (11) for the upper bound is
close to the actual value ofJ cf and can serve as an approximative analytic expression forJ cf .

3.3. Pair spin correlation and string order

At first we consider the limit of large frustratingJf > J cf , where the simple product state
|90,...,0〉, equation (5), is the ground state. Then all spin–spin correlations are zero except
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Figure 8. Short-range spin correlations versusJp for the unfrustrated chainHp−d andN = 24
sites. 〈Snβ · Sna(b)〉: NN dimer spin–plaquette spin;〈Sna · Sn+1

a 〉: plaquette spin–plaquette spin
of neighbouring plaquettes;〈Snα · Snβ 〉: NN dimer spin–dimer spin.

Figure 9. Spin correlations for largest spin separations versusJp for the unfrustrated chainHp−d
andN = 24. 〈Sna · Sn+3

β 〉: dimer spin–plaquette spin;〈Sna · Sn+3
a 〉: plaquette spin–plaquette

spin; 〈Snα · Sn+3
β 〉: dimer spin–dimer spin.

〈Snα · Snβ〉 and〈Sna · Snb 〉 which take their extreme value−3/4.
In what follows we discuss the more interesting case whereJf < J cf , i.e. the ground state

is that of the unfrustratedHp−d . Numerical results forN = 24 andN = 32 are shown in
figures 7–10. To get a general impression of the distance dependence of the correlations we
present in figure 7 a histogram showing the pair correlation versus the separation for three
values ofJp/Jd . The short-range correlations〈Snα ·Snβ〉 (NN dimer spins),〈Snβ ·Sna(b)〉 (NN

plaquette–dimer spins) and〈Sna(b) · Sn+1
a(b) 〉 (plaquette spins of two neighbouring plaquettes)

versusJp/Jd are shown in figure 8 and the spin correlations for large separations, namely
〈Sna(b) ·Sn+3

β 〉 (dimer spin–plaquette spin),〈Sna(b) ·Sn+3
a(b) 〉 (plaquette spin–plaquette spin) and

〈Snα · Sn+3
β 〉 (dimer spin–dimer spin) are given in figure 9.

In the dimer limit (Jp � Jd ) the dimer and plaquette spins are decoupled; that
is, 〈Snα(β) · Sma(b)〉 = 0. Otherwise, the NN dimer correlation〈Snα · Snβ〉 takes its extreme
value−3/4, while for spins belonging to different dimers,〈Snα(β) · Smα(β)〉 (n 6= m) goes
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to zero, too. However, though the dimer and plaquette spins and the non-neighbouring
dimer spins are not correlated, there is a well-pronounced correlation between more distant
plaquette spins with several dimer spins in between. This is a typical quantum effect; a
classical spin chain with NN exchange would be split into separate pieces at the point
where the NN correlations are zero. The correlation between spins of different plaquettes
is described by the effective Haldane chain (15); the numerical results indicate that this
effective Hamiltonian describes the chain well untilJp/Jd ∼ 0.1–0.15. For example for
Jp = 0.1Jd the plaquette–plaquette correlation〈Sna(b) ·Sma(b)〉 differs from the corresponding

Haldane correlation14〈Sn · Sm〉 (indicated by crosses in figure 7) by less than 3%.

Figure 10. The string orderOzπ (n,m) (see equation (21)) for(n,m) = (1, 2), (1, 3), (1, 4)
versusJp/Jd for the unfrustrated chainsHp−d of lengthN = 24 andN = 32.

In the plaquette limit (Jp � Jd ) the ground state becomes a simple product state of
the lowest four-spin plaquette states. Hence, forJp → ∞ we have〈Snα · Smβ 〉 → 0,
〈Sna(b) · Sla(b)〉 → 0 (n 6= l) and 〈Snβ · Sna(b)〉 → −0.5. For Jp = Jd the pair correlation
is already dropping down very rapidly (cf. figure 7) and, besides the correlation along the
Jp-bond,〈Snβ · Sna(b)〉, only extremely short-ranged correlations are present.

There is a comparably small region aroundJp/Jd ∼ 0.3–0.4 where we have a balance
betweenJp andJd and all correlations are well pronounced. Since we have a gap for all
Jp > 0 we argue that all correlations show exponential decay but with different correlation
lengthsξdd for the dimer–dimer correlations,ξdp for the dimer–plaquette correlations and
ξpp for the plaquette–plaquette correlations. The results obtained suggest thatξpp is quite
large forJp/Jd � 1 (ξpp = ξHaldane≈ 6.03 [18, 19, 21] forJp/Jd → 0). With increasingJp
there is a continuous decrease ofξpp up to ξpp → 0 for Jp →∞. Otherwise,ξdd andξpd
are extremely small forJp/Jd � 1 andJp/Jd � 1 but show a maximum forJp/Jd ∼ 0.35
(ξdd ) andJp/Jd ∼ 0.3 (ξpd ) .

Finally we discuss the string order parameter describing possible hidden order in spin-1
chains [18–20]. This order parameter is defined as

Ozπ (i, j) =
〈
Szi

(
exp

j∑
k=i+1

iπSzk

)
Szj

〉
where theSzi are spin-1 objects. For the Haldane spin-1 chain we have

Ozπ = lim
|i−j |→∞

Ozπ (i, j) = 0.374 325 096
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and the valueOzπ (1, 4) for the third neighbour is already close toOzπ [18]. For the dimer
plaquette chain considered we write

Ozπ (n,m) =
〈
S
n,z
ab

(
exp

m∑
k=n+1

iπSk,zab

)
S
m,z
ab

〉
(21)

with S
m,z
ab defined in (3). The results are shown in figure 10. In agreement with pair

correlation we observe a Haldane-like behaviour untilJp/Jd ∼ 0.1–0.15 which is followed
by a region 0.15Jd . Jp . 0.6Jd in which a crossover from the Haldane behaviour to the
product state with vanishing pair correlations and vanishing string order takes place.

4. Conclusions

We have calculated the ground-state properties and low-lying excitations for anS = 1/2
chain with alternating dimers and plaquettes (see equations (1) and (2) and figure 1). This
model is in some sense the 1D counterpart of the 1/5-depleted square-lattice Heisenberg
model for CaV4O9.

While the classical ground state of the unfrustrated modelHp−d is the Ńeel state, there
is a quantum competition between local singlet formation on the dimers and on plaquettes
for S = 1/2. Beside giving exact-diagonalization and perturbation theory results, we have
made several general and rigorous statements.

The main results can be summarized as follows. The ground-state properties and a class
of excitations ofHp−d can be mapped onto a mixed spin-1/2–spin-1 chain with two dimer
S = 1/2 spins and one effectiveS = 1 plaquette spin in the unit cell. In the limit of small
plaquette bondsJp � Jd , the ground-state correlations of the effectiveS = 1 plaquette
spins can be described by a Haldane chain. On increasing the ratioJp/Jd , a crossover
takes place from the effective Haldane chain to a ground state described by a product of
plaquette singlet states. The pair correlations are characterized by three different correlation
lengths for dimer–dimer, dimer–plaquette and plaquette–plaquette correlations. In the limit
in which Jp � Jd , the correlations between plaquette and dimer spins as well as between
non-neighbouring dimer spins vanish, but surprisingly the correlations between plaquette
spins are well pronounced. (Note that this is a purely quantum effect and has no classical
analogue.) In the opposite limit,Jp � Jd , all of the correlation lengths are extremely short
ranged.

Though the dimer–plaquette chainHp−d is anS = 1/2 model, the first triplet excitation
is separated by a gap for all parameter values exceptJp = 0. This is consistent with the
observation that the gapless ground state of the Bethe chain is quite unstable against the
addition of relevant operators to create a gap in the excitation spectrum (see for instance
the S = 1/2 chain with alternating NN bonds [38]).

Frustration can be introduced in the model in a simple way by adding an anti-
ferromagnetic interaction of strengthJf between the top and the bottom spin of a plaquette
(see (2) and figure 1). In the frustrated model we find a first-order quantum phase transition
at a finite critical frustrationJ cf between the ground-state phase described above and a
completely dimerized phase, which is similar to a recently described first-order transition
in antiferromagneticS = 1/2 coupled chains [29, 23]. Close to the transition the first
excitation above the ground state is not a triplet but a singlet, which is a signature of strong
frustration [37]. The model considered is one example showing rigorous validity of the
Marshall–Peierls sign rule in a frustrated antiferromagnet.

As mentioned in section 2, we will briefly point out some important differences between
the dimer–plaquette chain discussed in this paper and the spin-1/2 diamond chain considered
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in [22, 23]. In the limit of small frustration the diamond chain corresponds to a quantum
ferrimagnet. The ground state of this ferrimagnet has macroscopic total spinS = N/6, is
long-range ordered and the spectrum is gapless [26–28]. On the other hand, the dimer–
plaquette chain has a singlet ground state without long-range order and has a gap for all
parameter values considered here. However, the common property of the two models
consists in the product singlet state for large frustration.

Finally we mention that a straightforward extension of the model is obtained by adding
further plaquette spinsSnc , Snd , . . .. The ground-state properties of this extended model
could be mapped onto a corresponding mixed spin-1/2–spin-p/2 chain (p is the number of
spins in a plaquetten) with two dimerS = 1/2 spins and one effectiveS = p/2 plaquette
spin in the unit cell.
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