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Abstract. We examine the ground state and the excitations of a one-dimensional Heisenberg
spin-1/2 antiferromagnet with alternating dimers and four-spin plaquettes (a dimer—plaquette
chain). The properties of the system depend on the competing dimer and plaguette bonds.
Several exact, exact numerical and perturbational results are presented. We find that the system
is gapped for all parameter values. The spin pair correlation functions can be characterized
by three different correlation lengths for dimer—dimer, dimer—plaquette and plaquette—plaquette
correlations. For the latter we find an effectiSe= 1 Haldane-like behaviour in the limit of
dominating dimer bonds.

On introducing frustration, the system undergoes a first-order phase transition to a fully
dimerized state. As regards the phase relationships of the ground-state wave function, the
system represents an example showing exact validity of the Marshall-Peierls sign rule in a
strongly frustrated antiferromagnet.

The model considered is related to the recently foufisidepleted square-lattice Heisenberg
system Cay{Og.

1. Introduction

The exciting collective magnetic properties of low-dimensional quantum spin systems have
attracted much attention over the last decade. The search for systems with spin-liquid ground
states is one subject of continuous interest. Compressible (gapped) and incompressible
(gapless) spin-liquid phases with more or less exotic ground-state ordering have been
discussed in particular for the frustratéd-J, model on the square lattice (see e.g. [1]).

The recent discovery of a spin gap $h= 1/2 quasi-two-dimensional Ca\0q [2, 3]
has stimulated the investigation of quantum disorder and gap formation of systems with
different types of antiferromagnetic nearest-neighbour (NN) bond [4-10]. ,Ca¥as a
layered structure where the magnetit"\fons have spin 1/2 and form g3-depleted square
lattice [11, 12]. The minimal model for Ca®y is a 1/5-depleted Heisenberg model, i.e. a
model with four-spin plaquettes connected at their edges with one neighbouring plaquette.
Because of the distortion of the lattice [11, 12] the intra-plaquéjtbonds and the inter-
plaquette (dimer)/,-bonds might be different. Though in a classical version of this non-
frustrated Heisenberg model thé&#l state is the stable ground state for dpy- 0, J; > 0,
in the quantum case a competition arises between a local singlet formation of a couple of
spins along a dimer bond,; and a local singlet formation of the four spins belonging to
a plaquette and coupled hj,. However, the explanation of the measured spin gap by
competition betweery, and J; would require unreasonably large differences betwggen
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and J,;. As proposed in several papers [13, 12, 14-17] one needs additional frustration to
get reasonable values for the gap.

In this paper we extend our preliminary discussion [9, 10] of the competition between
dimer and plaquette bonds and the role of frustration in the one-dimensional counterpart of
the depleted square-lattice Heisenberg model. This model is simpler than the 2D model,
but nevertheless it contains non-trivial physics. As far as we are aware, currently there is
no corresponding quasi-1D material, but it seems to be possible that it may be synthesized
in the future.

Though the Heisenberg model considered is a spih+hodel, it will be shown below
that the model also contains elements of the physics of the spin-1 chain which is currently
also under intensive discussion (see e.g. [18-21] and references therein).

The paper is organized as follows. In section 2 we present the model and elaborate
on some exact statements concerning eigenvalues and eigenstates of the model. In section
3 we discuss exact numerical data for chains of up to 32 sites as well as analytic results
obtained using perturbation theory. Conclusions are given in section 4.

2. The model and general results

The spin-J2 Heisenberg chain considered here consist®v aépins formingN, = N/4
plaguettes which are connected by = N, dimer bonds (see figure 1). The two spins
connected by theth dimer bondJ; we call dimer spins and denote them 5§ and .S7,
where the indexx (8) stands for the left-hand (right-hand) spin. The two spins sited at the
top and the bottom of theth plaquette we call plaquette spins and denote ther§’pognd

S;, where the index: (b) stands for the top (bottom) spin. With this notation we write the
Hamiltonian as

N, N,
Hy_p=1J4) Si-Sp+J,» (Sp-Si+Sy-Sy+8:-Sitt+8p .80 @)
n=1 n=1
(Ja, J, > 0). Frustration is introduced by a diagonal antiferromagnetic hndonnecting
a top and a bottom plaquette spin (see figure 1). Then the total Hamiltonian reads
N,
H=Hy,+Hf=Hy_,+J» Si-S; J; = 0. @)
n=1

Figure 1. See the text.

For the sake of convenience we consider chains with periodic boundary conditions.

Approximately at the same time as we introduced [9] the above-defined dimer—plaquette
chain, Takano and co-workers [22] considered a so-called diamond chain, built of plaquettes
only. The ground-state problem of this diamond chain was recently analysed by Niggemann
et al [23]. The main difference between the two models consists in the existence of the



The antiferromagnetic spih/2 dimer—plaquette chain 3637

dimer bond in the dimer—plaquette chain. As a consequence, the two models belong to
different universality classes. We will briefly discuss some important differences between
the two models in section 4.

For the above described dimer—plaquette chain, equations (1), (2), we can make the
general statements given below in subsections 2.1-2.9.

2.1. The classical ground state

For J; < J, the ground state is ad¢l state. The correlations af§" - S;) = +S52 between
a bottom and top spin of the same plaquette-tfonds), (S - Sg) = —5? between two
neighbouring dimer spinsJ{-bonds) and(Sj - S%,) = (Si*!- Sl ,) = —S? between
a dimer spin and a neighbouring plaguette spip-ifonds). ForJ; > J, the ground
state has twisted plaquette spins. The corresponding correlations of neighbouring spins are
(Sp-Sp) = S%2J2/JF=1), (Sy-Sp) = —S?and(S}-Si ) = (Sutt- S0 ,)) = =820,/ Jy.

Now we turn to the quantum spin/2 case.

2.2. Integrals of motion

In addition to the usual integrals of motion (thecomponent and the square of the total
spin) there areV, local integrals of motion, namely the square of the total spin of the top
and bottom spin of a plaquetig i.e.

[H,(S")4-=0 S, =8I +S,. (3)

a

Hence we can classify all eigenstates in terms of the following set of the quantum numbers:
energyE, the z-component of the total spi/, the square of the total spifiand N, local
quantum numbers; of (8",)2, where the values fos; are O (singlet) or 1 (triplet). For the
correlation function of a top and a bottom spin of plaquettee have(S’ - S}) = —3/4
(+1/4) for §7 =0 (S, = 1).

2.3. The Lieb—Mattis theorem and the ground state in the non-frustrated limit

In the limit J; =0, i.e. H = H,_4, the lattice is bipartite and the Lieb—Mattis theorem is
valid [24, 25], i.e. the ground state is a singl&t= 0, of the total spin. As a consequence
of the theorem we haveS! - S;) > 0 since the top and bottom spins of a plaquette
belong to the same sublattice, i.e. the ground state is a singlet of the total spin but all local
quantum numbers arg) =1 (n = 1,..., N)).

We notice that the numerical results (see below) indicate that the ground state is a singlet
of the total spin for finite frustration, too, which is in accordance with other calculations of
the ground state of various frustrated antiferromagnets.

2.4. Mapping onto a spifly/2—spin-1 chain

As a result of the statement made in subsection 2.3 for zero temperature, the Hamiltonian (1)
can be exactly mapped onto a chain with mixed spiB-and spin-1 objects as shown in
figure 2.

This effective model describes not only the ground state, but also all other eigenstates
of (1) with 7 =1foralln=1,..., N,.

Notice that the antiferromagnetic chain with alternating sgins 1/2 andS = 1 was
recently discussed as a quantum ferrimagnet [26—28]; however, the effective model here is
of a different kind, since we have twice as many spfhs 1/2 as spinsS = 1.
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Figure 2. A spin-1/2—spin-1 chain, which is equivalent to the non-frustrated Hamiltonian (1)
for zero temperature.

2.5. Product eigenstates

We consider now the class of eigenstates which do not correspond to the/2pspih-1

chain, i.e. we consider states where some of the local quantum nusjpars zero. Sup-
poseS, = 0 in the plaquette. Then the top and bottom spins of plaqueitéorm a

singlet which is decoupled from all other spins, i.e. we haSg, - S, ;) =0 (n # i) and

(S * Sawy) = 0. Hence the eigenstate can be written in product form:

W) = |(ai, b)) | Wremainde) 4)

where|(a;, b)) = (ta,db, — da; Tb,,)/\/? is a pair singlet state of the top and bottom spins

of plaquettel and|Wemainge) IS @ State describing all of the remainiag— 2 spins forming

a corresponding open chain with dimer ends. Suppﬁj;se 0in L > 1 plaguettes. Then

the eigenstate separates idtqair singlet states of the top and bottom spins of plaquettes

i and eigenstates of the finite chain pieces lying between two plaquette§l"yv¢'£m. The

more plaquettes in a singlet statesg = 0, the shorter the finite chain pieces between two
plaquettes withS;‘) = 0. The extreme case is the state with= 10 foralln = 1,..., N,
plaquettes, where the finite pieces between two plaquettes are just the dimers themselves.
This state can be explicitly written as

N, N,
Wo....0) = [ [ 1@ b)) [ ] Iea. B)) ®)
n=1 n=1

where [(a,, B2)) = (ta, 4p, — o, 15,)/~/2 is @ pair singlet state of a dimer bond The
energy of this state is

Eo...0o=—-JiN, — ZJpr- (6)

2.6. Eigenstates and energy levels—the frustrated versus the non-frustrated model

Between the eigenstates and the energy of the non-frustrated (1) and the frustrated (2)
models there exist simple relations due to the fact #at, commutes withH;. Hence

the eigenfunctions of,_, are not changed on including frustration, and for the energy
contribution of the frustrating pari; only the local quantum number are important.
Consider any eigenstate fff,_, with energyE,_,, andN, plaguettes with quantum number

S, = 0 andN,, plaquettes with quantum numbsjg =1(N,+ N, = N,). Then the energy

for the frustrated modeld = H,_; + Hy is

1 3 1
E, qr=E, 4+ Jf(ZN;) 2 ;) =E, 4+ Jf(Z-Np — N;,) )
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2.7. Upper and lower bounds for the criticdf

From equation (7) it is obvious thal; favours energetically the singlet formation of
plaguette spins, and for largé the singlet product state (5) becomes the ground state
of H.

According to subsection 2.3 the ground state is the lowest eigenstatesivithl for
alln=1,...,N, for J; =0 and has the energyy{ ,. Following the ideas of reference

[23] we used a Ilnear programming scheme to prove that at a critical vilueO a first-
order transition takes place from this ground state directly to the product state (5) of energy

Eg_ o, equation (6), with§) =0 foralln =1,..., N, . Then the crltlcallC is defined by
E7 1ly=s¢ = Eo...0ly=s¢. According to (7) we have
1

EY . ily=se = =E) . 1ly=0+ 4Jf p=" (Jd+Jf)N

which yields
3 1
Ji=—7Ja—El 4 ®)
! 4 Np = Jy=0

First we look for an upper bound foff. We consider/; < J5. Then the state with
S, =1foralln=1,...,N, is the ground state anfly o, equation (6), sets an upper

.....

n
S a

Figure 3. An elementary clusteH! for the decompositiord = Y (H}! + an) (see the text).
The clusterH? is the mirror image ofd!.

A lower bound of the ground-state energy is found (see for instance [30]) by a simple
cluster decomposition off :

)
H=> H+H?

J, n n n n n J n n 9
H;:7[150['5/3""][;5/3'(511+Sh)+7fsa.sb ()
‘]f n n n n n Jd n n
H2 = ?Sa * Sb + JPSa+l - (Sa + Sb) + ESOZ—H- : S/3+1

n

(see figure 3). The lowest energy Hf* and H? with Sy=11is

Enz____+___\/1d 2J4J, +9J2. (10)

.....

—Zud + N, > EY 1 > 2N,E,
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implies the following upper bound faf;:

c Ja I 15
JE < _7+?+§\/Jd —2JqJ, +9J2. (11)

by a variational energ¥,,, of a trial ground state off,_;. SinCeE,,, > Ef ’’’’ 1(Jp=0),
the lower bound is

3 1
JE > =0 — —Eyr. 12
f 4 d Np v ( )

For J, > 0 we are able to find a trial state (see section 3) &l < —N, %Jd, i.e. J;‘ >0
is valid for finite J,,.

2.8. Validity of the Marshall—Peierls sign rule in a frustrated spin system

In the limit /; = 0 (H = H,_,) the lattice is bipartite and the Marshall-Peierls sign rule is
valid [31, 34], i.e. the phase relations of the ground-state wave function are exactly known.
Though there are several arguments that indicate that this sign rule will survive a finite
frustration [32—36], the validity of the sign rule in a non-bipartite frustrated lattice cannot
be shown generally.

On the basis of the statements in subsections 2.6 and 2.7 we argue that/fforallf
(Jf > 0) the ground state of the frustrated Hamiltoniélp, + H; is equal to the ground
state of the non-frustrated Hamiltonidf),_,.

Hence the plaquette—dimer chain considered is one example where the Marshall-Peierls
sign rule does indeed survive finite frustration.

2.9. The spin gap for large frustratiody > J¢

We consider the gaps of the first triplet excitation versus the singlet product ground state
,,,,, o) the top and bottom spins of any plaquette are
separated from all other spins, the first triplet excitation is a $tge. 0.1.0..0) with one
triplet for a certain plaquettg i.e. S;', =1

ey

N,—1 N,—2

Wo...10...0) = [W_cor) [ 1@ b)) TT I(etn: B)) (13)
n=1 n=1

where in 1‘[5;;1 the plaquette is excluded and irﬂffgz the left-hand and right-hand

neighbouring dimers of plaguetieare excluded.|W__. _) represents just the state with
S;, = 1 for the excluded plaquetteand the adjacent dimeisandi + 1. The degeneracy
of the state (13) is 8,,.

.....

(5), and|¥o_...0.1.0....0), €quation (13):
3
A=Er—Eo=Ja+Jp+E<(a Jp) (14)
whereE__._(Jz, J,) is the energy of the excluded clustex>— for J; = 0. Obviously,

E; — Ep is independent of the siz¥. Since|W__. ) is a state of only six spins it is ho
problem to calculaté_.._(Jy, J,,), i.€. to find the exact value faE; — Eo.
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3. Exact diagonalization versus perturbation theory

Using the Lanczos algorithm we calculate the ground state and several low-lying states for
chains with periodic boundary conditions of siae = 8,16,24,32 (i.e. N, = 2,4,6,8
plaquettes).

In the limits whereJ;/J, < 1 andJ,/J; <« 1 we calculate the energies of the singlet
ground state and the first triplet excitation by second-order perturbation theory. In the limit
where J; = 0 the unperturbed ground state is a product of the lowest four-spin plaquette
states. In the opposite limitf = 0) the ground state off,_,, equation (1), is a product
of dimer singlets and threefold-degenerate triplets of the plaquette spins. The perturbation
theory in second order aof, leads to the following effective spin Hamiltonian:

3 I R .
Heyy = =7 JaNy = J—dN,, t 35 > osu, - Sy (15)
n=1

where the quantitiesS”, are spin-1 operators, i.eS;‘h)2 = 2. We see that in the limit
whereJ,/J; < 1, the dimer—plaquett§ = 1/2 model maps onto th& = 1 Haldane chain
with an effective exchange parametgy, = J,?/Zjd.

3.1. Ground-state energy, low-lying excitations, spin gap

First we consider the ground-state enedy. For large frustration/, > J5 the explicit
expression forEy is given by equation (6).

For J; < J; the ground-state energy obeys equation (7) and it is sufficient to consider
the unfrustrated HamiltoniaH,_,. First we consider the two limits of small dimer exchange
Js < J, and of small plaquette exchandg <« J; . In the first case the perturbation theory

yields
Eo 1 143 /J,\°
= gz =2 . 16
4N, P[2+4576<J,,> (16)
The opposite limit is described by the effective spin-1 model (15), i.e.
E 3 J2 12
O = -y Py (17)

4N, ~ 167 41, " 8J,

whereey = —1.401484 038971 [18, 19] is the well-known energy per site of the Haldane
chain.

The numerical data foN = 16 are shown in figure 4. The energies presented belong
to the corresponding lowest eigenstate for a given set of local quantum nursihers
n=1,...,4. (An exception is the state with total spth=1 andS; =1,n =1,...,4,
which is the first triplet excitation versus the singlet ground state.) The state with highest
energy is just the product staf@, o), equation (5); its energy is independentJff (see
equation (6)). All of the energies presented are degeneraté,fer 0. On increasing/,
the energies exhibit a quadratic dependencéd,pfor small J,, and a linear dependence on
J,, for larger J,. Notice that the linear dependence gn(obtained via perturbation theory
in the limit J, > J,; see (16)) is already well established tty ~ J,.

In all of the finite systemsN = 8, 16,24, 32) considered in this paper, the first
triplet excitation has the same local quantum numbers as the ground statg] ke.1
(n =1,...,Np). The eigenstates with single§§ = O for somen have higher energies,
and we find that the larger the number of plaquettes Witk= 0 the higher the energy.
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0.0

-0.2 S S S = i

energy per site
S
(e}

......... S=
S=
§=
—08 S=0,1,2
S=
1 o S= .
0.0 1.0 1.5 2.0
Jp/dg

Figure 4. Energy eigenvalues versus,/J; for the unfrustrated modet,_; with N = 16
sites. The four numbers in brackets give the local quantum nunjers=1,...,4; S is the
gquantum number of the total spin.

Next we consider the excitation gap between the singlet ground state and the first
triplet excitation. This triplet excitation is the lowest excitation of all (see figure 4). The
perturbation theory for largd,/J, yields

14, 61 (J;\°
A=J|1-5—— =) | 18
”[ 3J, 576<J,,) (18)
This result was already obtained in [4]. In the opposite lindjt//, > 1, we can use the
results for the Haldane chain [18, 19] and we have

J? J?
A=Ay =0.41050-L. 19
27,1 27, (19)

If we include frustration the situation is not changed fpr< J; except in a small region
in the vicinity of the transition, i.e. fod; = J the first excitation is not a triplet but a
singlet indicating strong frustration effects [37]. Ffr > Ji the gap is exactly known for
the whole parameter range (see equation (14)).

Numerical data are shown in figure 5, whefeis shown versus/,. The linear
and quadratic dependences for large and smialtorrespond to the perturbation theory
(equations (18) and (19)). On the scale used for figure 5 the datd fer24 andN = 32
almost coincide.

In the case of the unfrustrated dimer—plaquette chain with identical NN honésJ; =
1 the gap is already about 50% larger than the HaldaneAggpthat is, A y—24 = 0.609 22,
An—3> = 0.60906, Ay_.» = 0.6086. In accordance with 2D models for Cad the
frustration may enlarge the gap; in the model considered we Rave + x) > A(Jy)

(x > 0).

Obviously, though we have a spigzl chain, A is finite for any finite J, which
corresponds to the observation that the gapless spectrum of the Bethe chain is an exceptional
case.

3.2. Critical J;‘

The critical pointJ¢ is defined in subsection 2.7. This point coincides with the point of
maximal frustration indicated by a maximum in the ground-state energy véfguecisely
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-——-- N=16
........ N=24
0.6 ooooo N=32 /F

\Jf=\Jd/2 /

Ei — Eo

Figure 5. The excitation gap between the singlet ground state and the lowest triplet excitation.
The dashed lines and the squares correspond to the unfrustrated case. The solid line corresponds
to the frustrated case witlf; > J;, where the gap is independent 8. For J; < J{ the

gaps of the frustrated and the unfrustrated models coincide. The critical poiit fo24 is at

J, =0.534J,.

1.0

16 sites
+++++ 24 sites ’
---- upper bound /,
------- lower bound /

0.0 02 04 1.0

66 0.5
o/ Ja

Figure 6. The critical frustration/; versusJ, for N = 24 (crosses) anty = 16 (solid line) and
upper and lower bounds (see the text). Above the critical line the ground statdsofhe fully
dimerized product state (5) and below the critical line the ground state of the total Hamiltonian
H coincides with that of,_, (equation (1)).

atJr = J¢.
fUppeJ; and lower bounds foff are given in equations (11) and (12).
For the estimation of the lower bound we consider a variational state of the form
N,—1
|“Ijvar) = 1_[ |Ta,, Tbn)N«a,H.l ‘Lbn+1)|{ans ﬁn}>|{,3n+lv ()[,,+1}> (20)
odd
where |14, 15,) (e, db,..)) IS @ triplet state of the plaquette spins witlcomponent
Sii =41 (Sp = —1) and

ab —

|{ana ,Bn}>|{,3n+L an+l})
=1+ (e, L) — Xay 18D UM s dans) = X gs Panin))
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Figure 7. Spin pair correlationgS(0) - S(;)) versus the separation of the unfrustrated chain
H,_, of lengthN = 32 sites for three values df,/J;. For the spin—spin separation the number

of NN steps from the reference spin at 0 to the spip istused. Left-hand (P) side of the figures:
reference spirS(0) is a plaquette spirsg(b), i.e. the correlationg = 1,2,4,5,7,8,10,11 are
plaquette—dimer correlations, the correlatigns 3, 6, 9, 12 are plaquette—plaquette correlations
(cf. figure 1). Right-hand (D) side of the figures: reference s§i0@) is a dimer spinSy,

i.e. the correlations = 1,3,4,6,7,9,10,12 are dimer—dimer correlations, the correlations

Jj = 2,5,8,11 are dimer—plaquette correlations (cf. figure 1). The crosses indicate the correl-
ations of the corresponding Haldane chain of lenyjtk= 8.

is a variational state which interpolates between a dimer singlet statel) and a Nel
state ¢ = 0). The calculation of the optimized is simple:

x==2l,/Jq+\J1+4J2/JZ.

The energy of this stat&,,. entering equation (12) is quite good in the limit of sma|l
and becomes exact fof, = 0.

The numerical results are presented in figure 6. While the lower bound demonstrates
that J¢ is finite for any finite J,, we see that the expression (11) for the upper bound is
close to the actual value off and can serve as an approximative analytic expressiosifor

3.3. Pair spin correlation and string order

At first we consider the limit of large frustrating; > J¢, where the simple product state
|Wo...0), equation (5), is the ground state. Then all spin—spin correlations are zero except
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0.0
-0.2
c
S
k)
£-0.4
o]
© #
< ;S (shSB), N=24
2-0.6 A A
A (SeSa ), N=24
J.]
e ___ (Sish), N=24
08T CRCABRARAN i AR 5
Jp/Ja

Figure 8. Short-range spin correlations versisfor the unfrustrated chai#l,_, and N = 24
sites. (Sg - S;,)): NN dimer spin—plaquette spir{S; - Si+hy: plaquette spin—plaguette spin
of neighbouring plaquettesS? - Sg): NN dimer spin—dimer spin.

0.10
0.05
< 0.00
0
5-0.05
£
$-0.10 /
TS (SR N=24
5-0.151 o/ (887
o o S e (ShSh*?), N=24
-0.20 -/,' o <S:S’;+3>: N=24
—0.25 Frrrrrrrer N .
0.0 0.5 1.0 15
Jp/Ja

Figure 9. Spin correlations for largest spin separations versu®r the unfrustrated chaif,_q
andN = 24. (S] - S,’;*e’): dimer spin—plaquette spin;S% - S;'+3): plaquette spin—plaguette
spin; (S} - Sg+3): dimer spin—dimer spin.

(Sy - S) and (S7 - S;) which take their extreme value3/4.

In what follows we discuss the more interesting case whigre J¢, i.e. the ground state
is that of the unfrustrated’,_,. Numerical results fotv = 24 andN = 32 are shown in
figures 7-10. To get a general impression of the distance dependence of the correlations we
present in figue 7 a histogram showing the pair correlation versus the separation for three
values ofJ,/Js. The short-range correlation$, - Sg) (NN dimer spins)(Sg - S ,)) (NN
plaquette—dimer spins) andy,, - S;'(J,g)l) (plaquette spins of two neighbouring plaquettes)
versusJ,/J,; are shown in figure 8 and the spin correlations for large separations, namely
(St S§+3) (dimer spin—plaquette spin)sSy, - 52%3) (plaquette spin—plaquette spin) and
(s Sg+3) (dimer spin—dimer spin) are given in figure 9.

In the dimer limit ¢/, <« J;) the dimer and plaquette spins are decoupled; that
is, (S”" Siw) = 0. Otherwise, the NN dimer correlatiofs? - Sg) takes its extreme

ap)
value —3/4, while for spins belonging to different dimerssg(ﬂ) . Sg’(ﬁ)) (n # m) goes
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to zero, too. However, though the dimer and plaguette spins and the non-neighbouring
dimer spins are not correlated, there is a well-pronounced correlation between more distant
plaquette spins with several dimer spins in between. This is a typical quantum effect; a
classical spin chain with NN exchange would be split into separate pieces at the point
where the NN correlations are zero. The correlation between spins of different plaquettes
is described by the effective Haldane chain (15); the numerical results indicate that this
effective Hamiltonian describes the chain well unfjl/J; ~ 0.1-0.15. For example for

J, = 0.1J, the plaquette—plaquette correlatio$f; ,, - S7i,)) differs from the corresponding

Haldane correlatior%(S,, - S,,) (indicated by crosses in figure 7) by less than 3%.

0.5
— 13y
0.4 7T 10, N=24

o©
w

o
N

string order

o
N

.6 08 1.0

0.0
0.0 02 04 0
Jp/Ja

Figure 10. The string orderOZ (n, m) (see equation (21)) fo(n, m) = (1, 2), (1,3), (1,4)
versusJ,/J; for the unfrustrated chaing,_, of length N = 24 andN = 32.

In the plaquette limit {, > J;) the ground state becomes a simple product state of

the lowest four-spin plaquette states. Hence, fpr— oo we have(S; - Sg) — 0,

(Shy) * Skwy) = 0 (n #1) and (S} - S7 ) — —05. ForJ, = J, the pair correlation

is already dropping down very rapidly (cf. figure 7) and, besides the correlation along the
Jp-bond, (S§ - S},)), only extremely short-ranged correlations are present.

There is a comparably small region aroufy J, ~ 0.3-0.4 where we have a balance
betweenJ, and J, and all correlations are well pronounced. Since we have a gap for all
J, > 0 we argue that all correlations show exponential decay but with different correlation
lengths&,, for the dimer—dimer correlationg,, for the dimer—plaquette correlations and
&,, for the plaquette—plaquette correlations. The results obtained sugges} thatquite
large forJ,/J; < 1 (§,p = EHaldane™ 6.03 [18, 19, 21] forJ,/J; — 0). With increasing/,
there is a continuous decreaseépf up to&,, — 0 for J, — oco. Otherwise£,;; andé,y
are extremely small fov,/J; <« 1 andJ,/J; > 1 but show a maximum foy,/J; ~ 0.35
(Eaa) @nd J,/Ja ~ 0.3 (€pa) -

Finally we discuss the string order parameter describing possible hidden order in spin-1
chains [18—20]. This order parameter is defined as

J
O, j) = <Sf<exp > ins,g>s;>

k=i+1
where theS; are spin-1 objects. For the Haldane spin-1 chain we have
O = lim OL3, j)= 0374325096

li=jl—o00
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and the valug)Z (1, 4) for the third neighbour is already close . [18]. For the dimer
plaquette chain considered we write

O (n,m) = <S;’;f (exp > iyrS(’j,f)S;’gz> (21)
k=n+1

with §,¢ defined in (3). The results are shown in figure 10. In agreement with pair

correlation we observe a Haldane-like behaviour umjlJ; ~ 0.1-0.15 which is followed

by a region Q15J; < J, < 0.6J; in which a crossover from the Haldane behaviour to the

product state with vanishing pair correlations and vanishing string order takes place.

4. Conclusions

We have calculated the ground-state properties and low-lying excitations fSr=arl/2

chain with alternating dimers and plaquettes (see equations (1) and (2) and figure 1). This
model is in some sense the 1D counterpart of tjig-depleted square-lattice Heisenberg
model for Ca\iOs.

While the classical ground state of the unfrustrated mdfjel, is the Neel state, there
is a quantum competition between local singlet formation on the dimers and on plaquettes
for § = 1/2. Beside giving exact-diagonalization and perturbation theory results, we have
made several general and rigorous statements.

The main results can be summarized as follows. The ground-state properties and a class
of excitations ofH,_; can be mapped onto a mixed spif2%spin-1 chain with two dimer
S = 1/2 spins and one effectivé = 1 plaquette spin in the unit cell. In the limit of small
plaguette bondy, « Jy;, the ground-state correlations of the effective= 1 plaquette
spins can be described by a Haldane chain. On increasing theJiati, a crossover
takes place from the effective Haldane chain to a ground state described by a product of
plaquette singlet states. The pair correlations are characterized by three different correlation
lengths for dimer—dimer, dimer—plaquette and plagquette—plaquette correlations. In the limit
in which J, <« J;, the correlations between plaquette and dimer spins as well as between
non-neighbouring dimer spins vanish, but surprisingly the correlations between plaquette
spins are well pronounced. (Note that this is a purely quantum effect and has no classical
analogue.) In the opposite limif,, > J;, all of the correlation lengths are extremely short
ranged.

Though the dimer—plaquette chatf)_, is anS = 1/2 model, the first triplet excitation
is separated by a gap for all parameter values exégpt 0. This is consistent with the
observation that the gapless ground state of the Bethe chain is quite unstable against the
addition of relevant operators to create a gap in the excitation spectrum (see for instance
the § = 1/2 chain with alternating NN bonds [38]).

Frustration can be introduced in the model in a simple way by adding an anti-
ferromagnetic interaction of strengih between the top and the bottom spin of a plaquette
(see (2) and figure 1). In the frustrated model we find a first-order quantum phase transition
at a finite critical frustration/; between the ground-state phase described above and a
completely dimerized phase, which is similar to a recently described first-order transition
in antiferromagneticS = 1/2 coupled chains [29, 23]. Close to the transition the first
excitation above the ground state is not a triplet but a singlet, which is a signature of strong
frustration [37]. The model considered is one example showing rigorous validity of the
Marshall—Peierls sign rule in a frustrated antiferromagnet.

As mentioned in section 2, we will briefly point out some important differences between
the dimer—plaquette chain discussed in this paper and the spin-1/2 diamond chain considered
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in [22, 23]. In the limit of small frustration the diamond chain corresponds to a quantum
ferrimagnet. The ground state of this ferrimagnet has macroscopic totaSspiN /6, is
long-range ordered and the spectrum is gapless [26—-28]. On the other hand, the dimer—
plaquette chain has a singlet ground state without long-range order and has a gap for all
parameter values considered here. However, the common property of the two models
consists in the product singlet state for large frustration.

Finally we mention that a straightforward extension of the model is obtained by adding
further plaquette spin§”, S7, .... The ground-state properties of this extended model
could be mapped onto a corresponding mixed spi&-&pinp/2 chain @ is the number of
spins in a plaquette) with two dimerS = 1/2 spins and one effectivé = p/2 plaquette
spin in the unit cell.
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